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Abstract

Autism spectrum disorder (ASD) is a neuropsychiatric disorder with strong evidence of genetic contribution, and
increased research efforts have resulted in an ever-growing list of ASD candidate genes. However, only a fraction of
the hundreds of nominated ASD-related genes have identified de novo or transmitted loss of function (LOF)
mutations that can be directly attributed to the disorder. For this reason, a means of prioritizing candidate genes for
ASD would help filter out false-positive results and allow researchers to focus on genes that are more likely to be
causative. Here we constructed a machine learning model by leveraging a brain-specific functional relationship
network (FRN) of genes to produce a genome-wide ranking of ASD risk genes. We rigorously validated our gene
ranking using results from two independent sequencing experiments, together representing over 5000 simplex and
multiplex ASD families. Finally, through functional enrichment analysis on our highly prioritized candidate gene
network, we identified a small number of pathways that are key in early neural development, providing further support

for their potential role in ASD.

Introduction

The term autism spectrum disorder (ASD) describes a
range of complex neurodevelopmental phenotypes
marked by impaired social interaction and communica-
tion skills along with restricted interests and repetitive
behaviors'. Incidence rates of ASD have been steadily
increasing in recent years, currently estimated to affect
>1% of the population worldwide®*. High rates of con-
cordance observed in studies of monozygotic twins* and
well-characterized monogenic manifestations of autism
(known as syndromic autism) provide support for a
genetic contribution for the disorder. Recently, a number
of large-scale family-based sequencing studies®** have
been conducted, aimed at uncovering potentially causal
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genomic variants for ASD. These studies, which primarily
focus on de novo loss-of-function (LOF) mutations, have
found significant associations with autism in anywhere
from 65 to 150 genes; however, statistical genetic models
estimate the total number of genes that contribute to ASD
at ~500'*, Uncovering the remaining contributory genes
in ASD will provide new insights into the molecular
etiology of the disorder, as well as identify novel targets
for pharmaceutical intervention.

The complexity of ASD points to the disregulation of
not one, but multiple pathways and biological processes.
Network studies have proven useful in refining our
understanding of the molecular basis of ASD'>7>°; how-
ever, many of these analyses are limited by networks built
upon functional associations in a single context or a lack
of tissue specificity. Studying known ASD genes in the
context of a tissue-specific functional network built on a
variety of integrated data types could provide a means of
elucidating novel candidate genes involved in autism
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susceptibility based on the biological pathways in which
they are involved.

A recent work®® addressed some of these shortcomings
to predict a genome-wide ranking of ASD-related genes
using an integrated genomic network based on a variety of
tissue-specific functional data types. Our study builds
upon this previous work in three ways. First, we use a
Bayesian model to build a functional relationship network
that not only integrates brain-specific gene expression
data with various protein-protein interaction data, but
does so across three different species (human, mouse, and
rat), providing a more complete molecular foundation
upon which to build our network. Second, we utilize a
more refined truth set of ASD genes (143 vs 594),
including genes known to cause syndromic autism, to
train our model. Third, we utilize a sophisticated random
forest ensemble model to generate our ASD gene ranking,
which is better suited to this prediction task than simple
linear or kernel-based models. The random forest model
was trained on the genome-wide functional connections
between our high-confidence ASD genes and identifies
genes with similar connectivity patterns within the net-
work as likely autism candidate genes. Our methods
constitute a novel algorithm with enhanced ability to
discriminate known ASD genes from control genes and to
prioritize genes with observed de novo mutations in aut-
ism probands. The resulting genome-wide ranking of
ASD genes can be used to prioritize candidate genes
identified through sequencing studies and to uncover
possible pathways that may be implicated in autism.
Moreover, our methods can be adapted for candidate
gene discovery in other complex disorders.

Methods
Gene set curation

To compile our truth set of known ASD genes, we
combined high confidence genes from the SFARI Gene
database® (http://gene.sfari.org) with a list of 65 genes
recently reported by Sanders et al.’”. The SFARI Gene
database contains a manually annotated list of over 600
genes along with citations supporting their association
with ASD. These genes are categorized based on the
strength of the evidence linking each gene with autism. To
ensure our truth set of known ASD genes contained only
high fidelity genes, we included genes in the SFARI
categories 1 (high confidence) and 2 (strong candidate) (n
= 55), which require stringent inclusion criteria regarding
statistical significance and replication of findings. In
addition to the category 1 and 2 genes, we also included
SFARI syndromic genes in our ASD truth set (n=79).
Considering the highly penetrant nature of many of these
syndromic mutations, we intuited that patterns in the
functional relationships between these genes and their
neighbors would be highly valuable in the prediction of
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novel candidate genes for idiopathic ASD as well. 18 genes
in the syndromic category overlapped with genes in the
category 1 and 2 lists. Additionally, we considered a list of
genes (n = 65) proposed by Sanders et al. as part of our
ASD truth set. These genes are the result of a rigorous de
novo mutation analysis across exomes of individuals from
the Autism Genome Project (AGP), Simons Simplex
Collection (SSC), and Autism Sequencing Consortium
(ASC), which controlled for the confounder of intellectual
disability. From the Sanders list, 37 of the 65 genes
overlapped with genes in the SFARI category 1 and 2 list
and 13 overlapped with genes in the SFARI syndromic list.
Overall, our ASD truth set comprised 143 unique, high
confidence autism-associated genes. Training a valid
machine learning model requires examples from both the
positive (known ASD) and negative (known non-ASD)
class. However, selection of “true” negative class examples
for training in this context is less straightforward than
selection of positive class examples. To enable a more
reliable comparison between works, we elected to use the
non-ASD gene list curated by Krishnan et al.*®. According
to their report, Krishnan et al. identified 1189 genes
associated with non-mental health diseases, as annotated
in OMIM. Upon investigation of this gene set, we found
13 of these 1189 “non-ASD” genes overlapped with genes
in our ASD truth set—11 genes from the SFARI syn-
dromic gene list (BRAF, CACNAIC, CDKL5, CHD?,
DMD, GATM, KCNJI10, NIPBL, OCRL, PTPN1I, and
SGSH) and two genes from the Sanders list (AKAP9 and
TCF7L2). After removing these, we were left with 1176
genes in our non-ASD training set.

Cross-species brain-specific functional relationship
network

We built a cross-species brain-specific functional rela-
tionship network (FRN) of over 20,000 genes through
Bayesian network integration of a diverse set of functional
genomic data types derived from human, mouse (Mus
musculus) and rat (Rattus norvegicus) experiments.
Combining molecular information across species gives
rise to a more complete functional network by providing
information for tissue types for which human samples are
rare. The four data types included in network construc-
tion were as follows.

Microarray

Gene Expression Omnibus (GEO)™® is a repository for
microarray data sets, measuring gene expression across a
variety of conditions, tissue types and species. From GEO,
we manually identified a subset of non-cancer-related
expression datasets in brain tissue from human, rat, and
mouse (n=213) based on the annotations provided.
Expression data were passed through a pipeline that
included log, transformation of probe set expression
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values, discarding probe sets with missing data for >30%
of subjects and imputing any missing expression values
using a k-Nearest Neighbor method for the remaining
probe sets, and computing gene expression values by
averaging the expression values for all probe sets mapped
to each gene. For all possible pairs of genes, the Fischer z-
transformed Pearson correlation was computed and used
as input for network generation.

Protein-protein interactions

Protein—protein interaction (PPI) data were obtained
from the Biomolecular Interaction Network Database
(BIND)?, the Biological General Repository for Interac-
tion Datasets (BioGRID)®’, IntAct®, the Molecular
Interaction database (MINT)??, and the Munich Infor-
mation Center for Protein Sequences (MIPS)**. Redun-
dant interactions were removed, resulting in a total of
30,800 PPIs informing the FRN.

Protein docking

We calculated a quantitative physical interaction (PI)
score for all protein isoform pairs in mouse. For each gene
pair, this PI score was calculated as the maximum of all its
isoform pairs, per the SPRING algorithm®*, Each mouse
gene was mapped to its homologous human gene, from
which we obtained PI scores for 5,064,860 gene pairs.

Phenotype annotations

Using the basic intuition that genes with similar phe-
notypic landscapes likely have underlying functional
relationships, we utilized phenotype annotations from the
Mouse Genome Informatics (MGI) database. In these
data, each gene was annotated to one or more broad
phenotypes, such as mortality/aging or behavior. For
every possible pair of genes, we utilized the number of
overlapped phenotypes as a feature for FRN construction.

The integration of these diverse data types provides
valuable insights into different aspects of functional
relationships between genes that cannot be fully captured
by a single experimental method, but is accompanied by
the caveat of the varying reliability between datasets. By
assigning weights to each dataset, we can exploit the
unique information provided from each source while
preventing potentially spurious results from biasing the
composition of the entire network. We utilized a two-
layer Bayesian network to perform weighted integration of
our four data types and provide the final probability of
functional interaction between all pairs of 21,122 genes.
This posterior probability of functional interaction was
calculated for each gene pair with the formula:

E) = GPER) T, PUEIER)

(1)

P(FR|Ey,Ey, Es, ...
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where FR represents a functional relationship, E; repre-
sents the ith piece of evidence, i.e., the score of the pair in
each dataset i, and C is a scaling factor for normalization.
Intuitively, this probability P(FR;;) for two genes i and j
translates to the likelihood, given existing data as well as
the accuracy and coverage of each input dataset, that
genes i and j are involved in the same biological process.

To determine the weights assigned to each dataset, we
assembled a gold standard list of true functional gene
relationships from Gene Ontology (GO)* biological
processes and Kyoto Encyclopedia of Genes and Genomes
(KEGG)® pathways. We limited this gold standard list to
include only those pathways/GO terms with 5-300
associated genes to avoid extremely specific or exceed-
ingly broad pathways that would be uninformative in this
context. Using these criteria, we identified functional gene
relationships in human, mouse and rat resulting in
778,312, 667,165, and 460,514 functionally related gene
pairs, respectively. Rat and mouse genes were mapped to
human homologs, creating a final gold standard list of
1,016,901 related gene pairs.

Our data integration method consisted of a two-layer
Bayesian model. In the first layer, brain-specific micro-
array datasets from GEO were consolidated into a com-
bined expression score using Eq. (1). In the second layer,
PPI, protein docking and functional annotations were
integrated with the combined expression score from the
first layer, also using Eq. (1). The result was a square
matrix (n=21,122) where each entry i,j was the prob-
ability P(FR;;) defined above, representing the edge
weights in our FRN. The network construction method
presented here is an iterative improvement on analogous
methods used for construction of other functional mole-
cular networks in previous works®”**®,

Network-based classifier training and whole-genome
prediction

We utilized a machine learning approach to distinguish
between ASD-related and non-ASD-related genes. As
stated above, our training set consisted of 1319 genes: 143
known ASD genes and 1176 genes with no evidence of
ASD association. Rows from the FRN matrix that corre-
sponded to these labeled genes were used to train the
classifiers.

We trained and optimized five different machine
learning models: support vector machine (SVM) with
linear kernel, random forest, extremely randomized trees,
bagging ensemble of random forests, and AdaBoost
ensemble of random forests. Our training approach con-
sisted of a stratified five-fold cross validation (CV) with a
nested grid-search for parameter optimization and class
weight parameters to offset the imbalance in class size.
Performance of each machine learning model was esti-
mated on the hold-out set for each fold of the CV using
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receiver-operating characteristic area under the curve
(ROC-AUC). Based on the average CV performance, we
chose the random forest as our final model for further
prediction. Model training was performed in Python using
the package scikit-learn®”.

Genome-wide prediction of ASD association was done
in one of two ways, as proposed by Krishnan et al.*°. For
initially “unlabeled” genes (i.e., genes not included in the
1319 genes used in training), prediction probabilities were
recorded over all five folds of CV and averaged to deter-
mine the final predicted probability of ASD association.
For each of the 1319 “labeled” genes, prediction prob-
ability was recorded only for the CV fold in which the
gene was included in the hold-out set, which became the
final prediction probability assigned to that gene. Finally,
we constructed a genome-wide ranking in terms of ASD
association by sorting all 21,112 genes by their ASD
association probabilities.

Validation in independent sequencing studies

We utilized results from two independent DNA
sequencing experiments'®'? comprising a total of 4583
ASD families to evaluate the validity of our gene ranking.
In the results from both studies, we focused on genes
harboring de novo loss-of-function (LOF) mutations.

In 2014, Iossifov et al. conducted an exome-sequencing
analysis of 2517 families in the SSC'®*°. This study
identified 350 LOF de novo mutations in the ASD pro-
bands (27 of which were observed in more than one
proband, i.e., “recurrent”) and 174 LOF de novo muta-
tions in the unaffected siblings. We observed the dis-
tribution of genes in each of these three gene lists across
our entire gene ranking. Our gene ranking was first split
into 10 evenly binned deciles, and using these bins we
computed a decile enrichment test®®. For each of the three
gene lists, we tested whether a larger proportion of the
genes were observed in the first decile than expected
using a binomial test. The expected proportion (0.157)
was determined using the distribution of genes with
synonymous de novo mutations in unaffected siblings (#
= 440) across our decile ranking.

Considering the publication of the SSC results preceded
the aggregation of data for our ASD truth set, it is possible
that these resulting genes (specifically the 27 recurrent
proband LOF genes) were considered in the manual
curation of the SFARI category 1 and 2 genes and were
therefore included in part of our training set. To ensure a
robust evaluation of our gene ranking, we performed an
analogous analysis using the results of a recently pub-
lished whole-genome sequencing study of the MSSNG
cohort, which were unpublished at the time of our data
collection'®. This analysis consisted of WGS data from
over 5000 samples (including 2626 ASD samples) in
families independent of the SSC. In total, this analysis
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identified 214 de novo LOF mutations in probands and
61 statistically significant de novo LOF or missense
mutations, 18 of which have been previously unreported
in terms of ASD association. We performed decile
enrichment on these three gene sets (total LOF, statisti-
cally significant LOF, previously unreported significant
LOF) as described above, using the same expected pro-
portion of top-decile genes identified from SSC sibling
control synonymous mutation distribution.

Comparison against other neurological disease genes

To ensure our genome-wide ranking was enriched for
true ASD-related genes, and not simply inflated by genes
that are integral to overall cognition and brain function,
we performed decile enrichment as described above on
genes known to be related to Alzheimer’s disease (AD)
and Parkinson’s disease (PD)—neurological disorders that
are unrelated to autism, as well as ataxia—a neurological
condition with known ASD comorbidity. We identified 20
genes known to be implicated in AD*!, 22 in PD (http://
www.pdgene.org/top_results), and 51 in ataxia (manual
expert curation using GeneCards), again using the sibling
synonymous mutation distribution as a benchmark for
expected top-decile enrichment.

Functional network characterization

We sought to identify and characterize functional
clusters within our predicted autism genes. We began
with the network produced by our top decile genes and
their direct connections in our FRN (connections are
defined by FRN probability score >0.98). We then used
the GLay** implementation of the Girvan—Newman fast
greedy algorithm® to perform community clustering
within the ASD-associated network. This algorithm
identifies stable community structure within large net-
works by iteratively removing edges with the highest
“betweenness”—a metric that produces higher values for
edges between communities rather than those within
communities.

We performed functional enrichment testing to identify
GO biological processes that were significantly enriched
in identified clusters. False discovery rate correction was
performed using the Benjamini-Hochberg method, and
GO biological processes whose Q-value <0.01 were con-
sidered significantly enriched.

Results

Using a machine learning approach, we developed a
genome-wide prediction for ASD-related genes based on
a cross-species, brain tissue-specific functional genomic
relationship network. We evaluated these candidate gene
predictions using results from two independent next-
generation sequencing experiments and identified several
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functional sub-clusters of interacting genes that may shed
new light on the molecular etiology of autism.

Prioritization of ASD candidate genes

We developed a functional relationship network of
21,112 genes by integrating publicly available tissue-
specific microarray, protein interaction, and phenotype
annotation datasets from human, mouse, and rat. We
implemented a two-layer Bayesian framework to weight
and combine evidence from each dataset individually,
resulting in a probabilistic functional interaction score for
all pairs of genes. This edge-weight matrix became the
feature basis for our machine learning classification
system.

To generate the most accurate predictions for ASD-
related genes, we curated a highly specific list of 143 genes
known to be implicated in autism. These genes were
extracted from the SFARI Gene database®” gene lists from
categories 1 (high confidence), 2 (strong candidate), and S
(syndromic). We augmented this SFARI-based gene list
with statistically significant genes identified in a recent
exome sequencing study by Sanders et al.” to finalize our
ASD-truth gene set. Using the control gene set proposed
by Krishnan et al.>°, we trained five independent machine
learning models to distinguish between autism and non-
autism genes. Classifier training was implemented with a
five-fold cross-validation (CV) scheme, with a nested grid-
search CV for parameter optimization. Based on the
performance of each model over the five-fold CV, we
chose the random forest as our final model (ROC-AUC =
0.875+ 0.024) (Fig. 1). The performance of this random
forest model was stable over 10 rounds of re-seeded five-
fold CV (Supplementary Fig. 1). Using this model,

'd )
SVM- 0.8353348 D
RandomForest = 0.8665738 I
3
2 ERTrees - 0.8668672
©
(&)
BaggingRandomForest = 0.8706596 .
AdaBoostRandomForest =  0.8259928 .
T T T T 1
0.70 0.75 0.80 0.85 0.90
ROC-AUC
Fig. 1 ROC-AUC for all classifiers over five-fold cross validation
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genome-wide probability of ASD association was calcu-
lated as the prediction value in the CV fold for which that
gene was in the hold-out set for all labeled genes in the
training set, or as the average prediction value across all
five folds of CV for all remaining unlabeled genes (Sup-
plementary Table 1).

We evaluated our ASD gene predictions using results
from two independent sequencing studies, focusing on
identified de novo LOF mutations. The first, an exome-
sequencing study of 2517 families in the SSC'°, identified
350 genes with de novo LOF mutations in probands (27
recurrent, or present in more than one proband) and 174
genes with de novo LOF mutations in unaffected siblings.
We found significant enrichment of proband de novo
LOF mutations (binomial test; P=1.6x10"'%) and
recurrent proband de novo LOF mutations (P =3.6 x
107") in our top decile genes, identifying as many as 67%
of these genes in the top 10% of our ranking. There was,
however, no significant enrichment of the genes harboring
de novo LOF mutations in the unaffected siblings among
our gene ranking (P=0.25; Fig. 2a). Furthermore, we
validated our ranking against results from a whole-
genome sequencing experiment in the MSSNG cohort, a
set of over 5000 samples independent from the SSC, that
was unpublished at the time of our ASD gene set curation
and model training"®. This study identified 214 total genes
with de novo LOF mutations in probands and 61 genes
that reached genome-wide significance for association
with ASD, 18 of which had no prior evidence of associa-
tion with ASD in the literature. Again, we found sig-
nificant enrichment of these gene lists in the top decile of
our ranking (binomial test; P=3.2 x 107%, <2.6 x 107 '°,
1.5 x 107, respectively; Fig. 2b).

While our gene ranking showed high sensitivity (i.e., the
ability to correctly prioritize ASD genes), we wanted to
also test the specificity, or the ability to downweight non-
autism genes, to ensure we were not simply observing an
enrichment for genes involved in basal brain function. To
understand the specificity of our ranking, we tested the
distribution of genes known to be implicated in AD, PD,
and ataxia across our ASD-based ranking. We found no
significant enrichment of the AD (binomial test; P = 0.63),
PD (P=0.12), or ataxia (P=0.31) gene sets in the top
decile of our ranking (Fig. 3), supporting the indication
that our ranking is enriched for ASD-specific genes and
not just for neural function.

Characterization of ASD brain network

To better understand the molecular basis of autism, it is
necessary not only to identify and prioritize candidate
genes, but also to study the interactions and the shared
biological processes in which those genes participate. We
defined the ASD brain network as the connections
between our top decile (#=2111) genes and their
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Fig. 4 Functional clusters in the ASD brain network
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immediate neighbors within our cross-species brain-spe-
cific network. Following the intuition that functionally
related genes tend to share many connections and develop
local “neighborhoods” within a larger network, we sought
to identify such functional neighborhoods using the
GLay** community finding algorithm.

Biological process enrichment testing revealed that the
ASD brain network organized into a number of func-
tionally distinct clusters, each having relevant associations
with the autism phenotype (Fig. 4). Cluster 1 showed
enrichment for several signaling pathways with evidence
of involvement in ASD, including IGF/PI3K**, canonical
Wnt*®, and MAPK cascade®. Biological processes such as
chromatin remodeling, histone modification, and tran-
scriptional regulation that have been previously impli-
cated in ASD are captured in clusters 2 and 4'%
Furthermore, a number of developmental processes are
enriched in our clusters, including embryonic develop-
ment and neuron fate commitment in cluster 5 and ner-
vous system development in cluster 6. Enrichment of
axonal and dendritic development and morphogenesis in
cluster 3 is of particular interest considering the evidence
of increased dendritic spine density in ASD*”*%,

Discussion

The genetic basis of autism is as complex as its phe-
notypic presentation is variable, posing numerous chal-
lenges in the identification and characterization of the full
complement of ASD risk genes. Continuously growing
sample sizes of ASD-related high-throughput sequencing

studies provide valuable resources for identification of
strongly associated mutations, however even these large-
scale studies may overlook potentially contributory
mutations with small to moderate effect sizes. Novel
methods to nominate potential ASD susceptibility genes
within their biological context are needed to fully uncover
the molecular underpinnings of the disorder.

Here we present a computational approach for identi-
fication of novel ASD candidate genes using a cross-
species brain-specific integrated functional relationship
network and advanced machine learning techniques. Our
method improves upon previous work in a number of
ways. Firstly, the underlying gene network integrated a
broad range of functional genomic data from three dif-
ferent species (human, mouse, and rat). Using microarray
data from homologous genes in mouse and rat provides
valuable insights into gene expression in tissue types for
which human samples may be relatively rare, as is the case
with brain tissue. Concatenating these results with those
from human-based studies within a Bayesian framework
enables a more robust representation of true functional
relationships between genes within our FRN. Secondly,
our selection criteria for curating our training gene sets
was more stringent than those used in Krishnan et al®.
resulting in a true ASD gene set more than 75% smaller
than their true ASD gene set even after inclusion of
syndromic ASD genes, which were omitted from their
analyses.

The implication of this difference is two-fold. First, by
limiting our training set to bona fide autism genes, we
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ensure that our classifier learns connectivity patterns
between genes with strong, repeated evidence of asso-
ciation with ASD and decreases the likelihood of erro-
neously prioritizing genes with no true molecular
connection to the disorder. Second, excluding syndromic
ASD genes from the truth set (as was done in previous
work) omits genes in which the autism phenotype is
highly penetrant, disregarding a significant portion of the
biological context they are attempting to leverage. In fact,
11 of the syndromic ASD genes (14%) were included in
the Krishnan et al. control gene set, which likely con-
tributed significantly to the variation in results between
our studies. Finally, we utilize a random forest model to
construct our ASD classifier, as opposed to the linear
SVM used in previous work. Intuitively, the random forest
is better suited to this classification task than linear SVM,
as it does not expect linear relationships between features
and is more robust to a high-dimensional feature space.
Furthermore, our random forest implementation includes
an embedded feature selection step, where the maximum
number of features used in construction of the ensemble
is the square root of the total feature set, or in this case
145 features. By definition SVM constructs a linear
boundary between all features in the feature set, which
can lead to overfitting when the feature set is significantly
larger than the number of training samples, as is the case
here and in Krishnan et al. Even more sophisticated SVM
implementations, such as polynomial kernel, are prone to
overfitting in this context, and therefore were excluded
from our study to bypass the computationally expensive
step of optimally tuning a huge parameter space. Toge-
ther, these enhancements culminate in significantly
improved performance, including an increase in our
classifier’s ability to discriminate between known ASD
and control genes (ROC-AUC = 0.87 vs. 0.80), as well as
an increase in the number of genes with de novo LOF
mutations observed in actual ASD probands that were
highly prioritized in our ranking (31.4% vs. 20.8%).

Our methods not only predicted genes with clear evi-
dence of ASD association but also proposed a number of
novel genes with high probability of contribution to aut-
ism risk. Community clustering and functional enrich-
ment testing of these highly prioritized genes revealed
several functional clusters consistent with those pre-
viously reported in ASD literature. For instance, cluster 3
includes known autism genes such as BRAF, PTEN, and
NTRKI involved in synaptic transmission and learning/
memory*”*®, and ASD genes CHD7, CHDS8, and CTCF
known to be involved in chromatin remodeling and his-
tone modification are found in cluster 4'*. Furthermore,
increasing evidence has implicated circadian rhythms**>°
and MAPK signaling pathways*®*" as important biological
processes contributing to ASD, which were represented in
clusters 1 and 2. The resulting functional clusters indicate
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that our highly prioritized ASD genes are indeed biolo-
gically meaningful to the autism phenotype. This clus-
tering can also provide biological insights into the
functional roles of highly ranked genes that are currently
uncharacterized or poorly understood, making strides
toward closing the gap between genotype and phenotype
in this complex disorder.

Overall, our probabilistic whole genome ranking serves
as a valuable resource for ASD gene discovery endeavors,
enabling researchers to better frame results from
sequencing experiments and identify promising candidate
genes for further exploration. Moreover, our approach
facilitates identification of genes with potentially small or
moderate effect sizes that may not reach significance in
large-scale sequencing studies by prioritizing genes with
connectivity patterns matching those of known ASD
genes, and are therefore likely to participate in similar
biological pathways. Additionally, our data-driven
approach can easily be utilized to predict genes with
potential pathogenic involvement in a number of complex
brain disorders.

Code availability
Code used to generate results is available at https://
github.com/GuanLab/ASD_FRN.
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